Area Mathematics - Functions / General concepts IEV ref 103-01-12 en interval set of real numbers such that, for any pair (x, y) of elements of the set, any real number z between x and y belongs to the setNote 1 to entry: There are several kinds of intervals: closed interval from a to b: $\left[a,\text{\hspace{0.17em}}b\right]=\left\{x\in R\text{\hspace{0.17em}}|\text{\hspace{0.17em}}a\le x\le b\right\}$ open interval from a to b: $\right]a,\text{\hspace{0.17em}}b\left[=\left\{x\in R\text{\hspace{0.17em}}|\text{\hspace{0.17em}}a half-open intervals: $\right]a,\text{\hspace{0.17em}}b\right]=\left\{x\in R\text{\hspace{0.17em}}|\text{\hspace{0.17em}}a and $\left[a,\text{\hspace{0.17em}}b\left[=\left\{x\in R\text{\hspace{0.17em}}|\text{\hspace{0.17em}}a\le x closed unbounded interval up to b or onward from a: $\right]-\infty ,\text{\hspace{0.17em}}b\right]=\left\{x\in R\text{\hspace{0.17em}}|\text{\hspace{0.17em}}x\le b\right\}$ and $\left[a,\text{\hspace{0.17em}}+\infty \left[=\left\{x\in R\text{\hspace{0.17em}}|\text{\hspace{0.17em}}a\le x\right\}$ open unbounded interval up to b or onward from a: $\right]-\infty ,\text{\hspace{0.17em}}b\left[=\left\{x\in R\text{\hspace{0.17em}}|\text{\hspace{0.17em}}x and $\right]a,\text{\hspace{0.17em}}+\infty \left[=\left\{x\in R\text{\hspace{0.17em}}|\text{\hspace{0.17em}}a fr intervalle, m ensemble de nombres réels tel que, quel que soit le couple (x, y) d'éléments de l'ensemble, tout nombre réel z compris entre x et y appartient à l'ensembleNote 1 à l'article: On distingue plusieurs catégories d'intervalles: intervalle fermé de a à b: $\left[a,\text{\hspace{0.17em}}b\right]=\left\{x\in R\text{\hspace{0.17em}}|\text{\hspace{0.17em}}a\le x\le b\right\}$ intervalle ouvert de a à b: $\right]a,\text{\hspace{0.17em}}b\left[=\left\{x\in R\text{\hspace{0.17em}}|\text{\hspace{0.17em}}a intervalles semi-ouverts: $\right]a,\text{\hspace{0.17em}}b\right]=\left\{x\in R\text{\hspace{0.17em}}|\text{\hspace{0.17em}}a et $\left[a,\text{\hspace{0.17em}}b\left[=\left\{x\in R\text{\hspace{0.17em}}|\text{\hspace{0.17em}}a\le x intervalle illimité fermé commençant en a ou finissant en b: $\right]-\infty ,\text{\hspace{0.17em}}b\right]=\left\{x\in R\text{\hspace{0.17em}}|\text{\hspace{0.17em}}x\le b\right\}$ et $\left[a,\text{\hspace{0.17em}}+\infty \left[=\left\{x\in R\text{\hspace{0.17em}}|\text{\hspace{0.17em}}a\le x\right\}$ intervalle illimité ouvert commençant en a ou finissant en b: $\right]-\infty ,\text{\hspace{0.17em}}b\left[=\left\{x\in R\text{\hspace{0.17em}}|\text{\hspace{0.17em}}x et $\right]a,\text{\hspace{0.17em}}+\infty \left[=\left\{x\in R\text{\hspace{0.17em}}|\text{\hspace{0.17em}}a ar فترة de Intervall, n es Intervalo it intervallo ko 구간 ja 区間 pl przedziałinterwał (stosowany w akustyce) pt intervalo sr интервал, м јд sv intervall zh 区间