Queries, comments, suggestions? Please contact us.



Area Control technology / Behaviour and characteristics of transfer elements

IEV ref351-45-29

Symbol
g(t)

en
unit-impulse response
weighting function
quotient impulse response Δvδ(t) divided by the impulse area Kδ of the impulse function, the quotient described by

g( t )= 1 K δ Δ v δ ( t ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgaruavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGeaGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaqFn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpeWZqaaiqaciWacmGadaGadeaabaGaaqaaaOqaaiaadEgadaqadaqaaiaadshaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGlbWaaSbaaSqaaiaabs7aaeqaaaaakiabgwSixJWaciab=r5aejaadAhadaWgaaWcbaGaaeiTdaqabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaaaaa@4573@

Note 1 to entry: The unit-impulse response g(t) of a system contains all properties of the system and is used to calculate the response Δv(t) of the system to any input variable Δu(t) by the convolution integral

Δv( t )= g( τ ) Δu( tτ )dτ MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgaruavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGeaGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaqFn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpeWZqaaiqaciWacmGadaGadeaabaGaaqaaaOqaaGWaaiab=r5aejaadAhadaqadaqaceaaahGaamiDaaGaayjkaiaawMcaaiabg2da9maapehabaGaam4zamaabmaabaGaeqiXdqhacaGLOaGaayzkaaaaleaacqGHsislcqGHEisPaeaacqGHEisPa0Gaey4kIipakiabgwSixlab=r5aejaadwhadaqadaqaaiaadshacqGHsislcqaHepaDaiaawIcacaGLPaaacaqGKbGaeqiXdqhaaa@5302@ .

Note 2 to entry: The systems frequency response G( jω ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgaruavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGeaGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaqFn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpeWZqaaiqaciWacmGadaGadeaabaGaaqaaaOqaaiaadEeadaqadaqaaiaabQgacqGHflY1cqaHjpWDaiaawIcacaGLPaaaaaa@3CA9@ may be calculated by Fourier transformation of g(t):

G( jω )={ g( t )} MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaiqaciWacmGadaGadeaabaGaaqaaaOqaaiaadEeadaqadaqaai aabQgacqGHflY1cqaHjpWDaiaawIcacaGLPaaacqGH9aqptuuDJXwA K1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=ftignaacmaaba Gaam4zamaabmaabaGaamiDaaGaayjkaiaawMcaaaGaay5Eaiaaw2ha aaaa@4DF7@ .

Note 3 to entry: The unit-impulse response of a system mathematically may be considered to result from application of a unit impulse to an input variable.

Note 4 to entry: This entry was numbered 351-24-19 in IEC 60050-351:2006.


fr
réponse impulsionnelle unité, f
fonction de pondération, f
quotient représenté par la réponse impulsionnelle Δvδ(t) divisé par la zone impulsionnelle Kδ de la fonction impulsion, le quotient étant décrit par

g( t )= 1 K δ Δ v δ ( t ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgaruavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGeaGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaqFn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpeWZqaaiqaciWacmGadaGadeaabaGaaqaaaOqaaiaadEgadaqadaqaaiaadshaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGlbWaaSbaaSqaaiaabs7aaeqaaaaakiabgwSixJWaciab=r5aejaadAhadaWgaaWcbaGaaeiTdaqabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaaaaa@4573@

Note 1 à l’article: La réponse impulsionnelle unité g(t) d’un système contient toutes les propriétés du système et est utilisée pour calculer la réponse Δv(t) du système à une variable d’entrée Δu(t) par l’intégrale de convolution

Δv( t )= g( τ ) Δu( tτ )dτ MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgaruavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGeaGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaqFn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpeWZqaaiqaciWacmGadaGadeaabaGaaqaaaOqaaGWaaiab=r5aejaadAhadaqadaqaceaaahGaamiDaaGaayjkaiaawMcaaiabg2da9maapehabaGaam4zamaabmaabaGaeqiXdqhacaGLOaGaayzkaaaaleaacqGHsislcqGHEisPaeaacqGHEisPa0Gaey4kIipakiabgwSixlab=r5aejaadwhadaqadaqaaiaadshacqGHsislcqaHepaDaiaawIcacaGLPaaacaqGKbGaeqiXdqhaaa@5302@ .

Note 2 à l’article: La réponse en fréquence du système G( jω ) MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgaruavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGeaGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaqFn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpeWZqaaiqaciWacmGadaGadeaabaGaaqaaaOqaaiaadEeadaqadaqaaiaabQgacqGHflY1cqaHjpWDaiaawIcacaGLPaaaaaa@3CA9@ peut être calculée par la transformation de Fourier de g(t):

G( jω )={ g( t )} MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaiqaciWacmGadaGadeaabaGaaqaaaOqaaiaadEeadaqadaqaai aabQgacqGHflY1cqaHjpWDaiaawIcacaGLPaaacqGH9aqptuuDJXwA K1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=ftignaacmaaba Gaam4zamaabmaabaGaamiDaaGaayjkaiaawMcaaaGaay5Eaiaaw2ha aaaa@4DF7@ .

Note 3 à l’article: La réponse impulsionnelle unité d’un système peut mathématiquement être considérée comme le résultat de l’application d’une impulsion unitaire à une variable d’entrée.

Note 4 à l'article: Cet article était numéroté 351-24-19 dans la CEI 60050-351:2006.


ar
إستجابة نبضة أحادية
دالة الوزن

de
Einheitsimpulsantwort, f
Gewichtsfunktion, f

es
respuesta a impulso unitario, f
respuesta impulsional, f

fi
yksikköimpulssivaste

it
risposta ad impulso unitario

ko
단위임펄스 응답

ja
単位インパルス応答

pl
odpowiedź impulsowa
odpowiedź na impuls Diraca

pt
resposta ao impulso unitário

zh
单位脉冲响应
加权函数

Publication date: 2013-11
Copyright © IEC 2020. All Rights Reserved.