Queries, comments, suggestions? Please contact us.



Area Superconductivity / Test and evaluation methods

IEV ref815-17-13

en
AC magnetic susceptibility
series of complex coefficients obtained by the expansion in Fourier series of the AC magnetization M(t)

Note 1 to entry: The AC magnetization, M(t), under the magnetic field strength of h 0 cosωt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaadIgadaWgaaWcba GaaGimaaqabaGcciGGJbGaai4BaiaacohacqaHjpWDcaWG0baaaa@3CC6@ is expanded as:

M(t)= h 0 n=0 [ κ n cos(nωt)+ κ n sin(nωt)] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaad2eacaGGOaGaam iDaiaacMcacqGH9aqpcaWGObWaaSbaaSqaaiaaicdaaeqaaOWaaabC aeaadaWadaqaaiabeQ7aRnaaDaaaleaacaWGUbaabaGaamiCaiaadk hacaWGPbGaamyBaiaadwgaaaGcciGGJbGaai4BaiaacohacaGGOaGa amOBaiabeM8a3jaadshacaGGPaGaey4kaSIaeqOUdS2aa0baaSqaai aad6gaaeaacaWGWbGaamOCaiaadMgacaWGTbGaamyzaaaakiGacoha caGGPbGaaiOBaiaacIcacaWGUbGaeqyYdCNaamiDaiaacMcaaiaawU facaGLDbaaaSqaaiaad6gacqGH9aqpcaaIWaaabaGaeyOhIukaniab ggHiLdaaaa@6384@

where κ n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiabeQ7aRnaaDaaale aacaWGUbaabaGaamiCaiaadkhacaWGPbGaamyBaiaadwgaaaaaaa@3CD8@ and κ n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiabeQ7aRnaaDaaale aacaWGUbaabaGaamiCaiaadkhacaWGPbGaamyBaiaadwgaaaaaaa@3CD8@ are the real and imaginary parts of the AC magnetic susceptibility for the order n.

Note 2 to entry: The fundamental components κ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiabeQ7aRnaaDaaale aacaWGUbaabaGaamiCaiaadkhacaWGPbGaamyBaiaadwgaaaaaaa@3CD8@ and κ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiabeQ7aRnaaDaaale aacaWGUbaabaGaamiCaiaadkhacaWGPbGaamyBaiaadwgaaaaaaa@3CD8@ are mostly observed for measurements of superconducting transition.

Note 3 to entry: The AC loss energy density W is given as:

W=π μ 0 h 0 2 κ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaadEfacqGH9aqpcq aHapaCcqaH8oqBdaWgaaWcbaGaaGimaaqabaGccaWGObWaa0baaSqa aiaaicdaaeaacaaIYaaaaOGaeqOUdS2aa0baaSqaaiaaigdaaeaaca WGWbGaamOCaiaadMgacaWGTbGaamyzaaaaaaa@457F@


fr
susceptibilité magnétique alternative, f
série de coefficients complexes obtenus par décomposition en série de Fourier de l'aimantation en alternatif M(t)

Note 1 à l’article: L'aimantation en alternatif, M(t), en présence d'un champ magnétique h 0 cosωt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaadIgadaWgaaWcba GaaGimaaqabaGcciGGJbGaai4BaiaacohacqaHjpWDcaWG0baaaa@3CC6@ se développe comme suit:

M(t)= h 0 n=0 [ κ n cos(nωt)+ κ n sin(nωt)] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaad2eacaGGOaGaam iDaiaacMcacqGH9aqpcaWGObWaaSbaaSqaaiaaicdaaeqaaOWaaabC aeaadaWadaqaaiabeQ7aRnaaDaaaleaacaWGUbaabaGaamiCaiaadk hacaWGPbGaamyBaiaadwgaaaGcciGGJbGaai4BaiaacohacaGGOaGa amOBaiabeM8a3jaadshacaGGPaGaey4kaSIaeqOUdS2aa0baaSqaai aad6gaaeaacaWGWbGaamOCaiaadMgacaWGTbGaamyzaaaakiGacoha caGGPbGaaiOBaiaacIcacaWGUbGaeqyYdCNaamiDaiaacMcaaiaawU facaGLDbaaaSqaaiaad6gacqGH9aqpcaaIWaaabaGaeyOhIukaniab ggHiLdaaaa@6384@

κ n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiabeQ7aRnaaDaaale aacaWGUbaabaGaamiCaiaadkhacaWGPbGaamyBaiaadwgaaaaaaa@3CD8@ et κ n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiabeQ7aRnaaDaaale aacaWGUbaabaGaamiCaiaadkhacaWGPbGaamyBaiaadwgaaaaaaa@3CD8@ sont les parties réelle et imaginaire de la susceptibilité magnétique alternative pour le rang n.

Note 2 à l’article: Les composantes fondamentales κ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiabeQ7aRnaaDaaale aacaWGUbaabaGaamiCaiaadkhacaWGPbGaamyBaiaadwgaaaaaaa@3CD8@ et κ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiabeQ7aRnaaDaaale aacaWGUbaabaGaamiCaiaadkhacaWGPbGaamyBaiaadwgaaaaaaa@3CD8@ sont surtout utilisées pour les mesures de transition supraconductrice.

Note 3 à l’article: La densité de puissance des pertes en courant alternatif W est donnée par:

W=π μ 0 h 0 2 κ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaadEfacqGH9aqpcq aHapaCcqaH8oqBdaWgaaWcbaGaaGimaaqabaGccaWGObWaa0baaSqa aiaaicdaaeaacaaIYaaaaOGaeqOUdS2aa0baaSqaaiaaigdaaeaaca WGWbGaamOCaiaadMgacaWGTbGaamyzaaaaaaa@457F@


de
Wechselfeld-Suszeptibilität, f

es
susceptibilidad magnética en corriente alterna

ko
교류 자화율

ja
交流磁化率

pl
podatność magnetyczna przemiennoprądowa, f

pt
suscetibilidade magnética em corrente alternada

zh
交流磁化率

Publication date: 2015-11
Copyright © IEC 2020. All Rights Reserved.