Queries, comments, suggestions? Please contact us.



Area Lighting / Emission, optical properties of materials

IEV ref 845-24-006

en
Wien's law, <of radiation>
approximate form of Planck's law, valid with an approximation better than one part in 1 000 when the product λT is smaller than 0,002 m·K

L e,λ (λ,T)= c 1 π λ 5 e c 2 λT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz 3bqee0evGueE0jxyaibaieYdi9WrpeeC0lXdh9vqqj=hEeea0xXdbb a9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXd bPYxe9vr0=vr0=vqpWqaaeaaciWacmGadaGadeaaeaGaauaaaOqaai aadYeadaWgaaWcbaGaaeyzaiaabYcacqaH7oaBaeqaaOGaaeikaiab eU7aSjaacYcacaWGubGaaeykaiabg2da9maalaaabaGaam4yamaaBa aaleaacaaIXaaabeaaaOqaaGWaaiab=b8aWbaacqaH7oaBdaahaaWc beqaaiabgkHiTiaaiwdaaaGccaqGLbWaaWbaaSqabeaadaWcaaqaai aadogadaWgaaadbaGaaGOmaaqabaaaleaacqaH7oaBcaWGubaaaaaa aaa@4DD6@

where Le,λ is spectral radiance, λ is the wavelength in vacuum, T is thermodynamic temperature, c 1  =2 π h  c 0 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz 3bqee0evGueE0jxyaibaieYdi9WrpeeC0lXdh9vqqj=hEeea0xXdbb a9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXd bPYxe9vr0=vr0=vqpWqaaeaaciWaamGadaGadeaaeaGaauaaaOqaaa baaaaaaaaapeGaam4ya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qa caGGGcGaeyypa0JaaGOmaiaacckacqaHapaCcaGGGcGaamiAaiaacc kapaGaam4yamaaDaaaleaacaaIWaaabaGaaGOmaaaaaaa@44E5@ , c 2  =h  c 0  / k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz 3bqee0evGueE0jxyaibaieYdi9WrpeeC0lXdi9qqqj=hEeeu0lXdbb a9frFj0xb9Lqpepeea0xd9s8qiYRWxGi6xij=hbba9q8aq0=yq=He9 q8qiLsFr0=vr0=vr0db8meaabaGacmaadiWaaiWabaabaiaafaaake aaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qacaaIYaaapaqabaGc peGaaiiOaiabg2da9iaadIgacaGGGcGaam4ya8aadaWgaaWcbaWdbi aaicdaa8aabeaak8qacaGGGcGaai4laiaacckacaWGRbaaaa@45FE@ , h is the Planck constant, c0 is the speed of light in vacuum, and k is the Boltzmann constant

Note 1 to entry: The formula is sometimes written with c 1 π Ω 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz 3bqee0evGueE0jxyaibaieYdi9WrpeeC0lXdh9vqqj=hEeea0xXdbb a9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXd bPYxe9vr0=vr0=vqpWqaaeaaciWacmGadaGadeaaeaGaauaaaOqaam aalaaabaGaam4yamaaBaaaleaacaaIXaaabeaaaOqaaGWaaiab=b8a WjaaysW7cqqHPoWvdaWgaaWcbaGaaGimaaqabaaaaaaa@3EC6@ instead of c 1 π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz 3bqee0evGueE0jxyaibaieYdi9WrpeeC0lXdh9vqqj=hEeea0xXdbb a9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXd bPYxe9vr0=vr0=vqpWqaaeaaciWacmGadaGadeaaeaGaauaaaOqaam aalaaabaGaam4yamaaBaaaleaacaaIXaaabeaaaOqaaGWaaiab=b8a Wbaaaaa@3AC5@ , where Ω0 is the solid angle of magnitude 1 sr.

Note 2 to entry: For a detector in a medium of refractive index n, the measured radiance is n−2Le,λ(λ, T).

Note 3 to entry: Wien's law can also be expressed to give the approximate spectral distribution of radiant exitance Me,λ(λ, T); the first factor in the formula is then c1 instead of c 1 π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz 3bqee0evGueE0jxyaibaieYdi9WrpeeC0lXdh9vqqj=hEeea0xXdbb a9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXd bPYxe9vr0=vr0=vqpWqaaeaaciWacmGadaGadeaaeaGaauaaaOqaam aalaaabaGaam4yamaaBaaaleaacaaIXaaabeaaaOqaaGWaaiab=b8a Wbaaaaa@3AC5@ .

Note 4 to entry: The quantities radiance (as referred to in Note 2 to entry) and radiant exitance (as referred to in Note 3 to entry) apply to the unpolarized radiation as emitted.

Note 5 to entry: This entry was numbered 845-04-06 in IEC 60050-845:1987.


fr
loi du rayonnement de Wien, f
loi de Wien, f
forme approchée de la loi de Planck, valable avec une approximation meilleure que 1 pour mille lorsque le produit λT est plus petit que 0,002 m·K

L e,λ (λ,T)= c 1 π λ 5 e c 2 λT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz 3bqee0evGueE0jxyaibaieYdi9WrpeeC0lXdh9vqqj=hEeea0xXdbb a9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXd bPYxe9vr0=vr0=vqpWqaaeaaciWacmGadaGadeaaeaGaauaaaOqaai aadYeadaWgaaWcbaGaaeyzaiaabYcacqaH7oaBaeqaaOGaaeikaiab eU7aSjaacYcacaWGubGaaeykaiabg2da9maalaaabaGaam4yamaaBa aaleaacaaIXaaabeaaaOqaaGWaaiab=b8aWbaacqaH7oaBdaahaaWc beqaaiabgkHiTiaaiwdaaaGccaqGLbWaaWbaaSqabeaadaWcaaqaai aadogadaWgaaadbaGaaGOmaaqabaaaleaacqaH7oaBcaWGubaaaaaa aaa@4DD6@

Le,λ est la luminance spectrale, λ est la longueur d'onde dans le vide, T est la température thermodynamique, c 1  =2 π h  c 0 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz 3bqee0evGueE0jxyaibaieYdi9WrpeeC0lXdh9vqqj=hEeea0xXdbb a9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXd bPYxe9vr0=vr0=vqpWqaaeaaciWaamGadaGadeaaeaGaauaaaOqaaa baaaaaaaaapeGaam4ya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qa caGGGcGaeyypa0JaaGOmaiaacckacqaHapaCcaGGGcGaamiAaiaacc kapaGaam4yamaaDaaaleaacaaIWaaabaGaaGOmaaaaaaa@44E5@ , c 2  =h  c 0  / k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz 3bqee0evGueE0jxyaibaieYdi9WrpeeC0lXdi9qqqj=hEeeu0lXdbb a9frFj0xb9Lqpepeea0xd9s8qiYRWxGi6xij=hbba9q8aq0=yq=He9 q8qiLsFr0=vr0=vr0db8meaabaGacmaadiWaaiWabaabaiaafaaake aaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qacaaIYaaapaqabaGc peGaaiiOaiabg2da9iaadIgacaGGGcGaam4ya8aadaWgaaWcbaWdbi aaicdaa8aabeaak8qacaGGGcGaai4laiaacckacaWGRbaaaa@45FE@ , h est la constante de Planck, c0 est la vitesse de la lumière dans le vide, et k est la constante de Boltzmann

Note 1 à l'article: La formule s'écrit parfois avec c 1 π Ω 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz 3bqee0evGueE0jxyaibaieYdi9WrpeeC0lXdh9vqqj=hEeea0xXdbb a9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXd bPYxe9vr0=vr0=vqpWqaaeaaciWacmGadaGadeaaeaGaauaaaOqaam aalaaabaGaam4yamaaBaaaleaacaaIXaaabeaaaOqaaGWaaiab=b8a WjaaysW7cqqHPoWvdaWgaaWcbaGaaGimaaqabaaaaaaa@3EC6@ au lieu de c 1 π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz 3bqee0evGueE0jxyaibaieYdi9WrpeeC0lXdh9vqqj=hEeea0xXdbb a9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXd bPYxe9vr0=vr0=vqpWqaaeaaciWacmGadaGadeaaeaGaauaaaOqaam aalaaabaGaam4yamaaBaaaleaacaaIXaaabeaaaOqaaGWaaiab=b8a Wbaaaaa@3AC5@ , où Ω0 est l'angle solide de 1 sr.

Note 2 à l'article: Pour un récepteur dans un milieu d'indice de réfraction n, la luminance énergétique mesurée est n−2Le,λ(λ, T).

Note 3 à l'article: La loi de Wien peut aussi être exprimée pour donner la répartition spectrale approchée de l'exitance énergétique Me,λ(λ, T); dans la formule, le premier facteur est alors c1 au lieu de c 1 π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz 3bqee0evGueE0jxyaibaieYdi9WrpeeC0lXdh9vqqj=hEeea0xXdbb a9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXd bPYxe9vr0=vr0=vqpWqaaeaaciWacmGadaGadeaaeaGaauaaaOqaam aalaaabaGaam4yamaaBaaaleaacaaIXaaabeaaaOqaaGWaaiab=b8a Wbaaaaa@3AC5@ .

Note 4 à l'article: Les grandeurs luminance énergétique (mentionnée dans la Note 2 à l'article) et exitance énergétique (mentionnée dans la Note 3 à l'article) s'appliquent au rayonnement non polarisé tel qu'il est émis.

Note 5 à l'article: Cet article était numéroté 845-04-06 dans l'IEC 60050-845:1987.


ar
قانون واين, <للإشعاع>

de
Wiensches Strahlungsgesetz, n

it
legge di Wien, <di radiazione>

ko
빈 법칙, <방사의>

ja
ウィーンの放射則, <放射の>

pl
prawo Wiena, <promieniowania> n

pt
lei de Wien, <de radiação>

zh
维恩定律, <辐射的>

Publication date: 2020-12
Copyright © IEC 2021. All Rights Reserved.