IEVref: | 171-07-17 | ID: | |

Language: | en | Status: Standard | |

Term: | relative entropy | ||

Synonym1: | |||

Synonym2: | |||

Synonym3: | |||

Symbol: | H_{r}
| ||

Definition: | ratio of the entropy H to the decision content H_{0}
EXAMPLE Let $\left\{a,b,c\right\}$ be a set of three events and let $p(a)=\mathrm{0,5}$, $p(b)=\mathrm{0,25}$ and $p(c)=\mathrm{0,25}$ be the probabilities of their occurrences. The relative entropy of this set is: ${H}_{\text{r}}=\mathrm{1,5}\mathrm{Sh}/\mathrm{1,585}\text{\hspace{0.17em}}\mathrm{Sh}\approx \mathrm{0,95}$. | ||

Publication date: | 2019-03-29 | ||

Source | IEC 80000-13:2008, 13-27, modified – Addition of information useful for the context of the IEV, and adaptation to the IEV rules | ||

Replaces: | |||

Internal notes: | |||

CO remarks: | |||

TC/SC remarks: | |||

VT remarks: | |||

Domain1: | |||

Domain2: | |||

Domain3: | |||

Domain4: | |||

Domain5: |

*H*_{r} = *H*/*H*_{0}

EXAMPLE Let $\left\{a,b,c\right\}$ be a set of three events and let $p(a)=\mathrm{0,5}$, $p(b)=\mathrm{0,25}$ and $p(c)=\mathrm{0,25}$ be the probabilities of their occurrences. The relative entropy of this set is: ${H}_{\text{r}}=\mathrm{1,5}\mathrm{Sh}/\mathrm{1,585}\text{\hspace{0.17em}}\mathrm{Sh}\approx \mathrm{0,95}$.