IEVref:102-03-49ID:
Language:enStatus: Standard
Term: Kronecker tensor
Synonym1:
Synonym2:
Synonym3:
Symbol:
Definition: tensor of the second order with components T ij = δ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaadsfadaWgaaWcba GaamyAaiaadQgaaeqaaOGaeyypa0dcdaGae8hTdq2aaSbaaSqaaiaa dMgacaWGQbaabeaaaaa@4073@ where δ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaGWaaiab=r7aKnaaBa aaleaacaWGPbGaamOAaaqabaaaaa@3C81@ is the Kronecker delta, equal to 1 if i = j and 0 if ij

Note 1 to entry: The components of the Kronecker tensor are independent of the base used. The inner product of the Kronecker tensor and a tensor or a vector is equal to this tensor or vector.

Note 2 to entry: When the properties of an anisotropic medium are represented at each point by a tensor quantity of the second order, this quantity reduces, in an isotropic medium, to the product of the Kronecker tensor and a scalar quantity. In practice, the quantity is then considered as a scalar quantity.


Publication date:2008-08
Source
Replaces:
Internal notes:2017-02-20: Editorial revisions in accordance with the information provided in C00019 (IEV 102) - evaluation. JGO
CO remarks:
TC/SC remarks:
VT remarks:
Domain1:
Domain2:
Domain3:
Domain4:
Domain5: