f(t)=∫ +∞ −∞f1(τ)f2(t+τ)dτ
f(t)=limT→∞12T∫ +T −Tf1(τ)f2(t+τ)dτ
Note 1 to entry: The Fourier transform of f(t) is equal to the product of the conjugate of the Fourier transform of f1(t) and the Fourier transform of f2(t):
F(ω)=F∗1(ω)F2(ω)
f(t)= ∫ −∞ +∞ f 1 (τ) f 2 (t+τ)dτ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaiqaciWacmGadaGadeaabaGaaqaaaOqaaiaadAgacaGGOaGaam iDaiaacMcacqGH9aqpdaWdXaqaaiaadAgadaWgaaWcbaqcLbqacaaI XaaaleqaaaqaaiaayIW7cqGHsislcqGHEisPaeaacaaMi8Uaey4kaS IaeyOhIukaniabgUIiYdGccaGGOaGaeqiXdqNaaiykaiaadAgadaWg aaWcbaqcLbqacaaIYaaaleqaaOGaaiikaiaadshacqGHRaWkcqaHep aDcaGGPaqcLbuaciGGKbGccqaHepaDaaa@53B2@
f(t)= lim T→∞ 1 2T ∫ −T +T f 1 (τ) f 2 (t+τ)dτ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaiqaciWacmGadaGadeaabaGaaqaaaOqaaiaadAgacaGGOaGaam iDaiaacMcacqGH9aqpdaWfqaqaaKqzafGaaeiBaiaabMgacaqGTbaa leaacaWGubGaeyOKH4QaeyOhIukabeaakmaalaaabaqcLbuacaaIXa aakeaajugqbiaaikdakiaadsfaaaWaa8qmaeaacaWGMbWaaSbaaSqa aKqzaeGaaGymaaWcbeaakiaacIcacqaHepaDcaGGPaaaleaacaaMi8 UaeyOeI0IaamivaaqaaiaayIW7cqGHRaWkcaWGubaaniabgUIiYdGc caWGMbWaaSbaaSqaaKqzaeGaaGOmaaWcbeaakiaacIcacaWG0bGaey 4kaSIaeqiXdqNaaiykaKqzafGaciizaOGaeqiXdqhaaa@5E5D@
Note 1 to entry: The Fourier transform of f(t) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaiqaciWacmGadaGadeaabaGaaqaaaOqaaiaadAgacaGGOaGaam iDaiaacMcaaaa@388F@ is equal to the product of the conjugate of the Fourier transform of f 1 (t) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaiqaciWacmGadaGadeaabaGaaqaaaOqaaiaadAgadaWgaaWcba qcLbqacaaIXaaaleqaaOGaaiikaiaadshacaGGPaaaaa@39FA@ and the Fourier transform of f 2 (t) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaiqaciWacmGadaGadeaabaGaaqaaaOqaaiaadAgadaWgaaWcba qcLbqacaaIYaaaleqaaOGaaiikaiaadshacaGGPaaaaa@39FB@ :
F(ω)= F 1 ∗ ( ω ) F 2 (ω) MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgaruavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGeaGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaqFn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpeWZqaaiqaciWacmGadaGadeaabaGaaqaaaOqaaiaadAeacaGGOaGaeqyYdCNaaiykaiabg2da9iaadAeadaqhaaWcbaGaaGymaaqaaiabgEHiQaaakmaabmaabaGaeqyYdChacaGLOaGaayzkaaGaamOramaaBaaaleaajugWaiaaikdaaSqabaGccaGGOaGaeqyYdCNaaiykaaaa@4664@