      IEVref: 103-09-06 ID: Language: en Status: Standard    Term: correlation function Synonym1:  Synonym2:  Synonym3:  Symbol: Definition: function $f\left(t\right)$ which is a measure of the similarity of two deterministic functions ${f}_{1}\left(t\right)$ and ${f}_{2}\left(t\right)$, defined by $f\left(t\right)={\int }_{\text{ }-\infty }^{\text{ }+\infty }{f}_{1}\left(\tau \right){f}_{2}\left(t+\tau \right)\mathrm{d}\tau$ function $f\left(t\right)$ which is a measure of the similarity of two stationary random functions ${f}_{1}\left(t\right)$ and ${f}_{2}\left(t\right)$, defined by $f\left(t\right)=\underset{T\to \infty }{\text{lim}}\frac{1}{2T}{\int }_{\text{ }-T}^{\text{ }+T}{f}_{1}\left(\tau \right){f}_{2}\left(t+\tau \right)\mathrm{d}\tau$Note 1 to entry: The Fourier transform of $f\left(t\right)$ is equal to the product of the conjugate of the Fourier transform of ${f}_{1}\left(t\right)$ and the Fourier transform of ${f}_{2}\left(t\right)$: $F\left(\omega \right)={F}_{1}^{\ast }\left(\omega \right){F}_{2}\left(\omega \right)$ Publication date: 2009-12 Source: Replaces: Internal notes: 2017-02-20: Editorial revisions in accordance with the information provided in C00020 (IEV 103) - evaluation. JGO 2017-08-25: Removed

tag between

• tags. LMO CO remarks: TC/SC remarks: VT remarks: Domain1: Domain2: Domain3: Domain4: Domain5: