Note 1 to entry: ξ , defined in the Ginzburg-Landau theory, is a function of temperature and nearly equal to the BCS coherence length, ξ0 , at 0 K in a clean superconductor.
Note 2 to entry: ξ=(Φ0/2π μ0 Hc2)1/2 , where Φ0 is the flux quantum, μ0 is the magnetic constant and Hc2 is the upper critical field strength.
Note 3 to entry: This entry was numbered 815-10-32 in IEC 60050-815:2015.
Note 1 to entry: ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadiaabaGaaqaaaOqaaiabe67a4baa@3714@ , defined in the Ginzburg-Landau theory, is a function of temperature and nearly equal to the BCS coherence length, ξ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadiaabaGaaqaaaOqaaiabe67a4naaBaaale aaiiaacaWFWaaabeaaaaa@37FB@ , at 0 K in a clean superconductor.
Note 2 to entry: ξ= ( Φ 0 / 2π μ 0 H c2 ) 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baqaaiGaciGacmaaceqaaeaacaabaaGcbaqcaaKaaqOVdiabg2da9O WaaeWaaKaaafaakmaalyaajaaqbaGaauOPdOWaaSbaaKqaafaacaaI WaaabeaaaKaaafaacaaIYaaccaGaa8hWdiaaysW7caaH8oGcdaWgaa qcbauaaiaa=bdaaeqaaaaajaaqcaaMe8UaamisaOWaaSbaaKqaafaa caWFJbacbaGaa4NmaaqabaaajaaqcaGLOaGaayzkaaGcdaahaaqcba uabeaacaaIXaGaai4laiaaikdaaaaaaa@482C@ , where Φ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadiaabaGaaqaaaOqaaGWaciab=z6agnaaBa aaleaacaaIWaaabeaaaaa@37B8@ is the flux quantum, μ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadiaabaGaaqaaaOqaaiabeY7aTnaaBaaale aaiiaacaWFWaaabeaaaaa@37EE@ is the magnetic constant and H c2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baqaaiGaciGacmaaceqaaeaacaabaaGcbaqcaaKaamisaOWaaSbaaK qaafaaiiaacaWFJbacbaGaa4Nmaaqabaaaaa@363B@ is the upper critical field strength.