IEVref:102-03-46ID:
Language:enStatus: Standard
Term: tensor product, <of a tensor and a vector>
Synonym1:
Synonym2:
Synonym3:
Symbol:
Definition: tensor of the third order defined by the trilinear form equal to the product of the bilinear form defining a tensor of the second order on a given Euclidean space and the linear form identified with a vector in the same space

Note 1 to entry: The components of the tensor product of the tensor T and the vector U are: (TU) ijk = T ij U k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaKqzafGaaiikaGqadi aa=rfacqGHxkcXcaWHvbGaaiykaOWaaSbaaSqaaiaadMgacaWGQbGa am4AaaqabaGccqGH9aqpjugqbiaadsfakmaaBaaaleaacaWGPbGaam OAaaqabaqcLbuacaWGvbGcdaWgaaWcbaGaam4Aaaqabaaaaa@457C@ .

Note 2 to entry: The tensor product of a tensor and a vector is denoted by TU MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaGqadKqzafGaa8hvai abgEPielaa=nfaaaa@39BC@ .


Publication date:2008-08
Source
Replaces:
Internal notes:2017-02-20: Editorial revisions in accordance with the information provided in C00019 (IEV 102) - evaluation. JGO
CO remarks:
TC/SC remarks:
VT remarks:
Domain1:
Domain2:
Domain3:
Domain4:
Domain5: