IEVref:815-20-35ID:
Language:frStatus: Standard
Term: longueur de cohérence, f
Synonym1: longueur de cohérence de Ginzburg-Landau, f
[Preferred]
Synonym2:
Synonym3:
Definition: longueur qui décrit la variation spatiale du paramètre d'ordre supraconducteur dans la théorie de Ginzburg-Landau

Note 1 à l’article: ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadiaabaGaaqaaaOqaaiabe67a4baa@3714@ , appelée longueur de cohérence Ginzburg-Landau, dépend de la température et sensiblement égale à la longueur de cohérence BCS, ξ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadiaabaGaaqaaaOqaaiabe67a4naaBaaale aaiiaacaWFWaaabeaaaaa@37FB@ à 0 K pour un supraconducteur propre.

Note 2 à l’article: ξ= ( Φ 0 / 2π μ 0 H c2 ) 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baqaaiGaciGacmaaceqaaeaacaabaaGcbaqcaaKaaqOVdiabg2da9O WaaeWaaKaaafaakmaalyaajaaqbaGaauOPdOWaaSbaaKqaafaacaaI WaaabeaaaKaaafaacaaIYaaccaGaa8hWdiaaysW7caaH8oGcdaWgaa qcbauaaiaa=bdaaeqaaaaajaaqcaaMe8UaamisaOWaaSbaaKqaafaa caWFJbacbaGaa4NmaaqabaaajaaqcaGLOaGaayzkaaGcdaahaaqcba uabeaacaaIXaGaai4laiaaikdaaaaaaa@482C@ , où Φ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadiaabaGaaqaaaOqaaGWaciab=z6agnaaBa aaleaacaaIWaaabeaaaaa@37B8@ est le quantum de flux, μ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadiaabaGaaqaaaOqaaiabeY7aTnaaBaaale aaiiaacaWFWaaabeaaaaa@37EE@ est la constante magnétique et H c2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baqaaiGaciGacmaaceqaaeaacaabaaGcbaqcaaKaamisaOWaaSbaaK qaafaaiiaacaWFJbacbaGaa4Nmaaqabaaaaa@363B@ est le champ magnétique critique supérieur.

Note 3 à l’article: Cet article était numéroté 815-10-32 dans l’IEC 60050-815:2015.


Publication date:
Source
Internal notes:
CO remarks:
TC/SC remarks:
VT remarks:
Domain1:
Domain2:
Domain3:
Domain4:
Domain5: