IEVref:102-06-29ID:
Language:enStatus: Standard
Term: positive definite matrix
Synonym1:
Synonym2:
Synonym3:
Symbol:
Definition: Hermitian matrix A such that, for any non-zero column matrix U with complex elements, the 1 × 1 matrix UHAU has a unique element which is real and positive: (UHAU)11 > 0

Note 1 to entry: A symmetric matrix A with real elements is a positive definite matrix if UTAU > 0 for any non-zero column matrix U with real elements.

Note 2 to entry: All eigenvalues of a positive definite matrix are positive.


Publication date:2008-08
Source
Replaces:
Internal notes:2017-02-20: Editorial revisions in accordance with the information provided in C00019 (IEV 102) - evaluation. JGO
CO remarks:
TC/SC remarks:
VT remarks:
Domain1:
Domain2:
Domain3:
Domain4:
Domain5: