IEVref:113-07-45ID:
Language:enStatus: Standard
Term: four-rotation
Synonym1:
Synonym2:
Synonym3:
Symbol: Rot
Definition: four-dimensional generalization of three-dimensional rotation

Rot A _ _ :={ A ν x μ A μ x ν } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGaciGacmaaceGaaiGacaabaaGcbaGaaiOuaiaac+gacaGG0b WaaWqaaeaacaWGbbaaaiaacQdacqGH9aqpdaGadaqaamaalaaabaGa eyOaIyRaamyqamaaBaaaleaacaaH9oaabeaaaOqaaiabgkGi2kaayI W7caWG4bWaaSbaaSqaaiaaeY7aaeqaaaaakiabgkHiTmaalaaabaGa eyOaIyRaamyqamaaBaaaleaacaaH8oaabeaaaOqaaiabgkGi2kaayI W7caWG4bWaaSbaaSqaaiaae27aaeqaaaaaaOGaay5Eaiaaw2haaaaa @4E6E@

where A _ _ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGaciGacmaaceGaaiGacaabaaGcbaWaaWqaaeaacaWGbbaaaa aa@347D@ is an arbitrary four-vector

Note 1 to entry: Four-rotation is useful in STR. In general theory of relativity (GTR) for non-flat space-time, a more sophisticated method is used.

Note 2 to entry: Whereas three-dimensional rotation is described by a pseudovector, four-rotation is described by an antisymmetric four-dimensional tensor.

Note 3 to entry: In the International System of Quantities, the dimension of four-rotation is L 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacaabaaGcbaGaciitamaaCaaaleqaba GaeyOeI0IaaGymaaaaaaa@35AD@ .


Publication date:2022-06
Source
Replaces:
Internal notes:
CO remarks:
TC/SC remarks:
VT remarks:
Domain1:
Domain2:
Domain3:
Domain4:
Domain5: