NOTE 1 In an n-dimensional space with orthonormal base vectors the scalar product of two vectors U and V is the sum of the products of each coordinate Ui of the vector U and the corresponding coordinate Vi of the vector V:
U⋅V=∑iUiVi
NOTE 2 For two complex vectors U and V either the scalar product U⋅V or a Hermitian product U⋅V* may be used depending on the application.
NOTE 3 A scalar product can be similarly defined for a pair consisting of a polar vector and an axial vector and is then a pseudo-scalar, or for a pair of two axial vectors and is then a scalar.
NOTE 4 The scalar product of two vector quantities is the scalar product of the associated unit vectors multiplied by the product of the scalar quantities.
NOTE 5 The scalar product is denoted by a half-high dot (·) between the two symbols representing the vectors.
NOTE 1 In an n-dimensional space with orthonormal base vectors the scalar product of two vectors U and V is the sum of the products of each coordinate U i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaKqzafGaamyvaOWaaS baaSqaaKqzGdGaamyAaaWcbeaaaaa@3CD3@ of the vector U and the corresponding coordinate V i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaKqzafGaamOvaOWaaS baaSqaaKqzGdGaamyAaaWcbeaaaaa@3CD4@ of the vector V:
U⋅V= ∑ i U i V i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaKqzafGaaCyvaiabgw SixlaahAfacqGH9aqpkmaaqafabaqcLbuacaWGvbGcdaWgaaWcbaqc LboacaWGPbaaleqaaaqaaKqzGdGaamyAaaWcbeqdcqGHris5aKqzaf GaamOvaOWaaSbaaSqaaKqzGdGaamyAaaWcbeaaaaa@4AFF@
NOTE 2 For two complex vectors U and V either the scalar product U⋅V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaKqzafGaaCyvaiabgw SixlaahAfaaaa@3D83@ or a Hermitian product U⋅V* MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaahwfacqGHflY1ca WHwbGaaiOkaaaa@3D82@ may be used depending on the application.