rotU=limV→01V∯
where endA is the vector surface element oriented outwards and V is the volume
NOTE 1 In orthonormal Cartesian coordinates, the three coordinates of the rotation are:
∂ U z ∂ y − ∂ U y ∂ z , ∂ U x ∂ z − ∂ U z ∂ x , ∂ U y ∂ x − ∂ U x ∂ y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaamaalaaabaGaeyOaIy RaaGPaVlaadwfadaWgaaWcbaGaamOEaaqabaaakeaacqGHciITcGaA aIPaVlaadMhaaaGaeyOeI0YaaSaaaeaacqGHciITcaaMc8Uaamyvam aaBaaaleaacaWG5baabeaaaOqaaiabgkGi2kaaykW7caWG6baaaiaa ysW7caaMe8UaaGjbVlaacYcacaaMe8UaaGjbVlaaysW7caaMe8+aaS aaaeaacqGHciITcaaMc8UaamyvamaaBaaaleaacaWG4baabeaaaOqa aiabgkGi2kaaykW7caWG6baaaiabgkHiTmaalaaabaGaeyOaIyRaaG PaVlaadwfadaWgaaWcbaGaamOEaaqabaaakeaacqGHciITcaaMc8Ua amiEaaaacaaMe8UaaGjbVlaaysW7caGGSaGaaGjbVlaaysW7caaMe8 UaaGjbVpaalaaabaGaeyOaIyRaaGPaVlaadwfadaWgaaWcbaGaamyE aaqabaaakeaacqGHciITcaaMc8UaamiEaaaacqGHsisldaWcaaqaai abgkGi2kaaykW7caWGvbWaaSbaaSqaaiaadIhaaeqaaaGcbaGaeyOa IyRaaGPaVlaadMhaaaaaaa@898E@
NOTE 2 The rotation of a polar vector is an axial vector and the rotation of an axial vector is a polar vector.
NOTE 3 The rotation of the vector field U is denoted by rotU MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiGacogacaGG1bGaai OCaiaacYgacaWHvbaaaa@39F6@ or ∇×U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaGWabiab=DGirlabgE na0kaahwfaaaa@3D4D@ . In some English texts, the rotation is denoted by curlU MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiGacogacaGG1bGaai OCaiaacYgacaWHvbaaaa@39F6@ .
rotU= lim V→0 1 V ∯ S e n ×UdA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiGackhacaGGVbGaai iDaiaahwfacqGH9aqpdaWfqaqaaiGacYgacaGGPbGaaiyBaaWcbaGa amOvaiabgkziUkaaicdaaeqaaOWaaSaaaeaacaaIXaaabaGaamOvaa aadaWdwbqaaiaahwgadaWgaaWcbaGaamOBaaqabaGccqGHxdaTcaWH vbGaciizaiaadgeaaSqaaiaabofaaeqaniablkH7slabgUIiYlabgU IiYdaaaa@5061@