NOTE 1 A function D(x) can be considered as a distribution D assigning to a function f(x) the value
D(f)=+∞∫−∞D(x)f(x)dx if this integral exists.
NOTE 2 The derivative of a distribution D is another distribution D′ defined for any function f(x) by
D′(f)=−D(df/ dx).
D(f)= ∫ −∞ +∞ D(x)f(x)dx MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWaamGadaGadeaabaGaaqaaaOqaaiaadseacaGGOaGaam OzaiaacMcacqGH9aqpdaWdXbqaaiaadseacaGGOaGaamiEaiaacMca caWGMbGaaiikaiaadIhacaGGPaqcLbqacaGGKbGccaWG4baaleaacq GHsislcqGHEisPaeaacqGHRaWkcqGHEisPa0Gaey4kIipaaaa@4939@ if this integral exists.
D ′ (f)=−D(df/ dx) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWaamGadaGadeaabaGaaqaaaOqaaiqadseagaqbaiaacI cacaWGMbGaaiykaiabg2da9iabgkHiTiaadseacaGGOaqcLbqacaGG KbGccaWGMbGaai4laiaayIW7jugabiaacsgakiaadIhacaGGPaaaaa@436A@ .