IEVref:113-07-11ID:
Language:enStatus: Standard
Term: four-vector
Synonym1: 4-vector
[Preferred]
Synonym2:
Synonym3:
Symbol: A _ _ <in special theory of relativity> <en relativité restreinte>
Definition: vector in space-time consisting of a one-dimensional time-related component and a spatial three-dimensional vector

Note 1 to entry: Four-vector symbols can be written using two different forms of presentation:

  1. a light face single letter in italics with a double underscore, which is that form mostly used in the special theory of relativity (STR) when the first component is imaginary, by analogy with the underscoring of symbols of complex quantities, e.g. x _ _ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacaabaaGcbaGaaGPaVpaameaabaGaam iEaaaaaaa@359F@ ;
  2. a light face single letter in italics with a subscript (denoting the covariant component) or a superscript (denoting the contravariant component), which can or cannot be enclosed in braces (curly brackets), and which is that form mostly used in theoretical physics in both special theory of relativity and general theory of relativity (GTR), e.g. { x μ } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacaabaaGcbaWaaiWaaeaacaWLa8Uaam iEamaaBaaaleaacaqI8oaabeaaaOGaay5Eaiaaw2haaaaa@393C@ or { x μ } , x μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacqaH8oqBaeqaaaaa@38B6@ or x μ .

Note 2 to entry: In STR, the time-related component can be expressed as an imaginary quantity, using symbol j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaGaciOAaaaa@33F9@ as the imaginary unit. Then, pseudo-Euclidean metric can be used with rules of Euclidean metric but allowing negative magnitudes | x _ _ |<0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaWaaqWaaeaadaadbaqaai aadIhaaaaacaGLhWUaayjcSdGaeyipaWJaaGimaaaa@38F7@ and zero magnitudes | x _ _ |=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaWaaqWaaeaadaadbaqaai aadIhaaaaacaGLhWUaayjcSdGaeyypa0JaaGimaaaa@38F9@ even for x _ _ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaWaaWqaaeaacaWG4baaai abgcMi5kaaicdaaaa@3698@ . See IEV 113-07-18.

In case time-related component is real, it is denoted as the fourth component x 4 =ct MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaGaamiEamaaBaaaleaaca aI0aaabeaakiabg2da9iaadogacaWG0baaaa@37E1@ and the space-related components are x 1 , x 2 , x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaGaamiEamaaBaaaleaaca aIXaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiil aiaadIhadaWgaaWcbaGaaG4maaqabaaaaa@3A2C@ . The corresponding components of the metric tensor yielding the four-scalar product and squared four-magnitude have opposite signs, e.g., for flat space-time in STR g 11 = g 22 = g 33 =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaGaam4zamaaBaaaleaaca aIXaGaaGymaaqabaGccqGH9aqpcaWGNbWaaSbaaSqaaiaaikdacaaI Yaaabeaakiabg2da9iaadEgadaWgaaWcbaGaaG4maiaaiodaaeqaaO Gaeyypa0JaaGymaaaa@3EA4@ , g 44 =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaGaam4zamaaBaaaleaaca aI0aGaaGinaaqabaGccqGH9aqpcqGHsislcaaIXaaaaa@3855@ or g 11 = g 22 = g 33 =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaGaam4zamaaBaaaleaaca aIXaGaaGymaaqabaGccqGH9aqpcaWGNbWaaSbaaSqaaiaaikdacaaI Yaaabeaakiabg2da9iaadEgadaWgaaWcbaGaaG4maiaaiodaaeqaaO Gaeyypa0JaeyOeI0IaaGymaaaa@3F91@ , g 44 =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaGaam4zamaaBaaaleaaca aI0aGaaGinaaqabaGccqGH9aqpcaaIXaaaaa@3768@ . In GTR, the non-diagonal metric tensor is used.

Note 3 to entry: The representations used in this part of IEC 60050 are x _ _ =( x 0 , x 1 , x 2 , x 3 )={ x μ }=( x 0 ,{ x m } ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWqaaeaaca WG4baaaiabg2da9iaacIcacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGa aiilaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiEamaaBa aaleaacaaIYaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaiodaaeqa aOGaaiykaiabg2da9maacmaabaGaaCjaVlaadIhadaWgaaWcbaGaeq iVd0gabeaaaOGaay5Eaiaaw2haaiabg2da9maabmaabaGaamiEamaa BaaaleaacaaIWaaabeaakiaacYcadaGadaqaaiaadIhadaWgaaWcba GaamyBaaqabaaakiaawUhacaGL9baaaiaawIcacaGLPaaaaaa@5438@ , where x 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacaabaaGcbaGaamiEamaaBaaaleaaca aIWaaabeaaaaa@34E9@ is the time-related component and x m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGTbaabeaaaaa@37F2@ are the space-related components. In three-dimensional space, components of three-dimensional vectors are denoted using lowercase Latin letters for indices (i,j,k,l,m,) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaGaaiikaiaadMgacaGGSa GaamOAaiaacYcacaWGRbGaaiilaiaadYgacaGGSaGaamyBaiaacYca caGGUaGaaiOlaiaac6cacaGGPaaaaa@3E98@ .

In four-dimensional space, components of four-dimensional vectors are denoted using lowercase Greek letters for indices, ( ι,κ,λ,μ,ν, ) . In STR, indices range usually from 0 to 3, where 0 is used for the imaginary time-related component, and in GTR, indices range usually from 1 to 4 where 4 is used for the real time-related component.

Examples in STR are the position four-vector x _ _ :=( x 0 , x 1 , x 2 , x 3 )=(j c 0 t,x,y,z) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaWaaWqaaeaacaWG4baaai aaysW7cGaGGkOoaiabg2da9iaacIcacaWG4bWaaSbaaSqaaiaaicda aeqaaOGaaiilaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaam iEamaaBaaaleaacaaIYaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaa iodaaeqaaOGaaiykaiabg2da9iaacIcaciGGQbGaam4yamaaBaaale aacaaIWaaabeaakiaadshacaGGSaGaamiEaiaacYcacaWG5bGaaiil aiaadQhacaGGPaaaaa@4EDD@ and the electromagnetic four-potential A _ _ =( jV/ c 0 ; A x , A y , A z )=( jV/ c 0 ; A ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaWaaWqaaeaacaWGbbaaai abg2da9maabmaabaGaciOAaiaadAfacaGGVaGaam4yamaaBaaaleaa caaIWaaabeaakiaabUdacaWGbbWaaSbaaSqaaiaadIhaaeqaaOGaai ilaiaadgeadaWgaaWcbaGaamyEaaqabaGccaGGSaGaamyqamaaBaaa leaacaWG6baabeaaaOGaayjkaiaawMcaaiabg2da9maabmaabaGaci OAaiaadAfacaGGVaGaam4yamaaBaaaleaacaaIWaaabeaakiaabUda daWhcaqaaiaadgeaaiaawEniaaGaayjkaiaawMcaaaaa@4CEE@ .

Note 4 to entry: If there is no risk of misunderstanding, “free index symbolic” is used, e.g. a component x μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacqaH8oqBaeqaaaaa@38B6@ instead of full vector { x μ } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacaabaaGcbaWaaiWaaeaacaWLa8Uaam iEamaaBaaaleaacaqI8oaabeaaaOGaay5Eaiaaw2haaaaa@393C@ . Index μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaGaaKiVdaaa@3453@ is then called “free index”.


Publication date:2022-06
Source
Replaces:
Internal notes:
CO remarks:
TC/SC remarks:
VT remarks:
Domain1:
Domain2:
Domain3:
Domain4:
Domain5: