Note 1 to entry: Defining a ray as the confined radiation exchange between two subtended surface area elements dA and dA′ at distance l, with normal vectors nA and n′A and orientation angles θ and θ′ with respect to a common optical axis, the geometric extent is equal to the action of all possible rays between both surface areas A and A′. This is expressed by the integral over the product of all projected area elements dA cos θ and dA′ cos θ′ weighted by the distance squared to account for the apparent size of the subtending surfaces areas:
G=1l2∫A∫A′dAcosθ⋅dA′cosθ′=∫dG
with
dG =dAcosθ⋅dA′cosθ′l2=dAcosΘ⋅dΩ=dA′cosθ′⋅dΩ′=dG′
where dΩ and dΩ′ are the solid angle elements defining the angular extent of dA′ from dA and dA from dA′ respectively.
Note 2 to entry: "Single-pass" means that the term applies only for radiation transfer in a single defined direction. It does not apply to devices such as Fabry–Pérot cavities.
Note 3 to entry: See also "optical extent".
Note 4 to entry: The geometric extent is expressed in square metre times steradian (m2·sr).
Note 5 to entry: This entry was numbered 845-01-33 in IEC 60050-845:1987.
Note 1 to entry: Defining a ray as the confined radiation exchange between two subtended surface area elements dA and dA′ at distance l, with normal vectors n A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz 3bqee0evGueE0jxyaibaieYdi9WrpeeC0lXdh9vqqj=hEeea0xXdbb a9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXd bPYxe9vr0=vr0=vqpWqaaeaaciWacmGadaGadeaaeaGaauaaaOqaai aah6gadaWgaaWcbaGaaCyqaaqabaaaaa@3907@ and n ′ A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz 3bqee0evGueE0jxyaibaieYdi9WrpeeC0lXdh9vqqj=hEeea0xXdbb a9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXd bPYxe9vr0=vr0=vqpWqaaeaaciWacmGadaGadeaaeaGaauaaaOqaai qah6gagaqbamaaBaaaleaacaWHbbaabeaaaaa@3913@ and orientation angles θ and θ′ with respect to a common optical axis, the geometric extent is equal to the action of all possible rays between both surface areas A and A′. This is expressed by the integral over the product of all projected area elements dA cos θ and dA′ cos θ′ weighted by the distance squared to account for the apparent size of the subtending surfaces areas:
G= 1 l 2 ∫ A ∫ A ′ dAcosθ⋅d A ′ cos θ ′ = ∫ dG MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz 3bqee0evGueE0jxyaibaieYdi9WrpeeC0lXdh9vqqj=hEeea0xXdbb a9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXd bPYxe9vr0=vr0=vqpWqaaeaaciWacmGadaGadeaaeaGaauaaaOqaai aadEeacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGSbWaaWbaaSqabeaa caaIYaaaaaaakmaapefabaWaa8quaeaacaqGKbGaamyqaiGacogaca GGVbGaai4CaiabeI7aXjabgwSixlaabsgaceWGbbGbauaaciGGJbGa ai4BaiaacohacuaH4oqCgaqbaaWcbaGabmyqayaafaaabeqdcqGHRi I8aaWcbaGaamyqaaqab0Gaey4kIipakiabg2da9maapeaabaGaaeiz aiaadEeaaSqabeqaniabgUIiYdaaaa@5553@
dG = dAcosθ⋅d A ′ cos θ ′ l 2 =dAcosΘ⋅dΩ=d A ′ cos θ ′ ⋅d Ω ′ =d G ′ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz 3bqee0evGueE0jxyaibaieYdi9WrpeeC0lXdh9vqqj=hEeea0xXdbb a9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXd bPYxe9vr0=vr0=vqpWqaaeaaciWacmGadaGadeaaeaGaauaaaOqaai aabsgacaWGhbGaaeiiaiabg2da9maalaaabaGaaeizaiaadgeaciGG JbGaai4BaiaacohacqaH4oqCcqGHflY1caqGKbGabmyqayaafaGaci 4yaiaac+gacaGGZbGafqiUdeNbauaaaeaacaWGSbWaaWbaaSqabeaa caaIYaaaaaaakiabg2da9iaabsgacaWGbbGaci4yaiaac+gacaGGZb GaamiMdiabgwSixlaabsgacaWGPoGaeyypa0Jaaeizaiqadgeagaqb aiGacogacaGGVbGaai4CaiqbeI7aXzaafaGaeyyXICTaaeizaiqadM 6agaqbaiabg2da9iaabsgaceWGhbGbauaaaaa@64C7@