divU=limV→01V∯
où endA est l'élément vectoriel de surface orienté vers l'extérieur et V est le volume
NOTE 1 En coordonnées cartésiennes orthonormées, la divergence est:
divU= ∂ U x ∂x + ∂ U y ∂y + ∂ U z ∂z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiGacsgacaGGPbGaai ODaiaahwfacqGH9aqpdaWcaaqaaiabgkGi2kaadwfadaWgaaWcbaGa amiEaaqabaaakeaacqGHciITcaWG4baaaiabgUcaRmaalaaabaGaey OaIyRaamyvamaaBaaaleaacaWG5baabeaaaOqaaiabgkGi2kaadMha aaGaey4kaSYaaSaaaeaacqGHciITcaWGvbWaaSbaaSqaaiaadQhaae qaaaGcbaGaeyOaIyRaamOEaaaaaaa@4D81@ .
NOTE 2 La divergence du champ vectoriel U est notée div U ou ∇ ⋅ U.
divU= lim V→0 1 V ∯ S U⋅ e n dA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiGacsgacaGGPbGaai ODaiaahwfacqGH9aqpdaWfqaqaaiGacYgacaGGPbGaaiyBaaWcbaGa amOvaiabgkziUkaaicdaaeqaaOWaaSaaaeaacaaIXaaabaGaamOvaa aadaWdwbqaaiaahwfacqGHflY1caWHLbWaaSbaaSqaaiaad6gaaeqa aOGaciizaiaadgeaaSqaaiaabofaaeqaniablkH7slabgUIiYlabgU IiYdaaaa@5082@