rotU=limV→01V∯
où endA est l'élément vectoriel de surface orienté vers l'extérieur et V est le volume
NOTE 1 En coordonnées cartésiennes orthonormées, les trois coordonnées du rotationnel sont
∂ U z ∂ y − ∂ U y ∂ z , ∂ U x ∂ z − ∂ U z ∂ x , ∂ U y ∂ x − ∂ U x ∂ y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaamaalaaabaGaeyOaIy RaaGPaVlaadwfadaWgaaWcbaGaamOEaaqabaaakeaacqGHciITcGaA aIPaVlaadMhaaaGaeyOeI0YaaSaaaeaacqGHciITcaaMc8Uaamyvam aaBaaaleaacaWG5baabeaaaOqaaiabgkGi2kaaykW7caWG6baaaiaa ysW7caaMe8UaaGjbVlaacYcacaaMe8UaaGjbVlaaysW7caaMe8+aaS aaaeaacqGHciITcaaMc8UaamyvamaaBaaaleaacaWG4baabeaaaOqa aiabgkGi2kaaykW7caWG6baaaiabgkHiTmaalaaabaGaeyOaIyRaaG PaVlaadwfadaWgaaWcbaGaamOEaaqabaaakeaacqGHciITcaaMc8Ua amiEaaaacaaMe8UaaGjbVlaaysW7caGGSaGaaGjbVlaaysW7caaMe8 UaaGjbVpaalaaabaGaeyOaIyRaaGPaVlaadwfadaWgaaWcbaGaamyE aaqabaaakeaacqGHciITcaaMc8UaamiEaaaacqGHsisldaWcaaqaai abgkGi2kaaykW7caWGvbWaaSbaaSqaaiaadIhaaeqaaaGcbaGaeyOa IyRaaGPaVlaadMhaaaaaaa@898E@ .
NOTE 2 Le rotationnel d'un vecteur polaire est un vecteur axial et celui d'un vecteur axial est un vecteur polaire.
NOTE 3 Le rotationnel du champ vectoriel U est noté rotU MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiGacogacaGG1bGaai OCaiaacYgacaWHvbaaaa@39F6@ ou ∇×U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaGWabiab=DGirlabgE na0kaahwfaaaa@3D4D@ . Dans certains textes anglais, il est noté curlU MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiGacogacaGG1bGaai OCaiaacYgacaWHvbaaaa@39F6@ .
rotU= lim V→0 1 V ∯ S e n ×UdA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiGackhacaGGVbGaai iDaiaahwfacqGH9aqpdaWfqaqaaiGacYgacaGGPbGaaiyBaaWcbaGa amOvaiabgkziUkaaicdaaeqaaOWaaSaaaeaacaaIXaaabaGaamOvaa aadaWdwbqaaiaahwgadaWgaaWcbaGaamOBaaqabaGccqGHxdaTcaWH vbGaciizaiaadgeaaSqaaiaabofaaeqaniablkH7slabgUIiYlabgU IiYdaaaa@5061@