Queries, comments, suggestions? Please contact us.



Area Transmission lines and waveguides / Standing-wave and impedance measurements

IEV ref 726-19-02

en
Z-Theta chart
graphical representation in polar coordinates of the amplitude reflection factor r, for a lossless uniform transmission line with characteristic impedance Z0:

r _ = Z _ Z o Z _ + Z o = Z _ / Z o 1 Z _ / Z o +1 MathType@MTEF@5@5@+= feaahCart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baqaaiGaciGacmaaceqaaeaacaabaaGcbaGabmOCayaaDaGaeyypa0 ZaaSaaaeaaceWGAbGba0bacqGHsislcaWGAbWaaSbaaSqaaiaab+ga aeqaaaGcbaGabmOwayaaDaGaey4kaSIaamOwamaaBaaaleaacaqGVb aabeaaaaGccqGH9aqpdaWcaaqaamaalyaabaGabmOwayaaDaaabaGa amOwamaaBaaaleaacaqGVbaabeaakiabgkHiTiaaigdaaaaabaWaaS GbaeaaceWGAbGba0baaeaacaWGAbWaaSbaaSqaaiaab+gaaeqaaOGa ey4kaSIaaGymaaaaaaaaaa@47B6@

in terms of the complex impedance Z by two families of orthogonal circles on each of which either the modulus Z or the argument θ has a constant value, where Z = Z/θ is the complex impedance in the direction of propagation of the incident wave at the point at which the amplitude reflection factor is evaluated

Note 1 to entry: The Z-Theta chart may be used with impedances Z, admittances Y _ = 1 Z _ MathType@MTEF@5@5@+= feaahCart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Lq=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapd baqaaiGaciGacmaaceqaaeaacaabaaGcbaGabmywayaaDaGaeyypa0 ZaaSaaaeaacaaIXaaabaGabmOwayaaDaaaaaaa@39D0@ .

Note 2 to entry: The Z-Theta chart is usually restricted to values of θ between π 2 MathType@MTEF@5@5@+= feaahCart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Lq=Jirpepeea0=as0Fb9pgea0lXxe9vr0=vr0=vqpWqa aeaaciGaciGadaGabeaabaGaaqaaaOqaaiabgkHiTmaalaaabaacda Gae8hWdahabaGaaGOmaaaaaaa@36F6@ and + π 2 MathType@MTEF@5@5@+= feaahCart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Lq=Jirpepeea0=as0Fb9pgea0lXxe9vr0=vr0=vqpWqa aeaaciGaciGadaGabeaabaGaaqaaaOqaaiabgUcaRmaalaaabaacda Gae8hWdahabaGaaGOmaaaaaaa@36EB@ corresponding to positive values of the real part of Z in which case it is bounded by an outer circle where the magnitude of the amplitude reflection factor is unity.

Note 3 to entry: The Z-Theta chart has the same properties and applications as those of the Smith chart, but the complex impedance Z is represented with two families of orthogonal circles on each of which either the modulus Z either the argument θ has a constant value instead of the real and imaginary parts R and X of Z used for the Smith chart.


fr
abaque Z-Théta, m
représentation graphique en coordonnées polaires du facteur de réflexion complexe r pour une ligne de transmission uniforme sans pertes, d'impédance caractéristique Z0:

r _ = Z _ Z o Z _ + Z o = Z _ / Z o 1 Z _ / Z o +1 MathType@MTEF@5@5@+= feaahCart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baqaaiGaciGacmaaceqaaeaacaabaaGcbaGabmOCayaaDaGaeyypa0 ZaaSaaaeaaceWGAbGba0bacqGHsislcaWGAbWaaSbaaSqaaiaab+ga aeqaaaGcbaGabmOwayaaDaGaey4kaSIaamOwamaaBaaaleaacaqGVb aabeaaaaGccqGH9aqpdaWcaaqaamaalyaabaGabmOwayaaDaaabaGa amOwamaaBaaaleaacaqGVbaabeaakiabgkHiTiaaigdaaaaabaWaaS GbaeaaceWGAbGba0baaeaacaWGAbWaaSbaaSqaaiaab+gaaeqaaOGa ey4kaSIaaGymaaaaaaaaaa@47B6@

en fonction de l'impédance complexe Z à l'aide de deux familles de cercles orthogonaux sur chacun desquels soit le module Z soit l'argument θ a une valeur constante, où Z = Z/θ est l'impédance complexe dans la direction de propagation de l'onde incidente au point de détermination du facteur de réflexion complexe

Note 1 à l'article: L'abaque Z -Théta peut être employé avec des impédances Z, des admittances Y _ = 1 Z _ MathType@MTEF@5@5@+= feaahCart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Lq=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9Fve9qapd baqaaiGaciGacmaaceqaaeaacaabaaGcbaGabmywayaaDaGaeyypa0 ZaaSaaaeaacaaIXaaabaGabmOwayaaDaaaaaaa@39D0@ .

Note 2 à l'article: L'abaque Z -Théta est habituellement limité aux valeurs de θ entre π 2 MathType@MTEF@5@5@+= feaahCart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Lq=Jirpepeea0=as0Fb9pgea0lXxe9vr0=vr0=vqpWqa aeaaciGaciGadaGabeaabaGaaqaaaOqaaiabgkHiTmaalaaabaacda Gae8hWdahabaGaaGOmaaaaaaa@36F6@ et + π 2 MathType@MTEF@5@5@+= feaahCart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Lq=Jirpepeea0=as0Fb9pgea0lXxe9vr0=vr0=vqpWqa aeaaciGaciGadaGabeaabaGaaqaaaOqaaiabgUcaRmaalaaabaacda Gae8hWdahabaGaaGOmaaaaaaa@36EB@ qui correspondent aux valeurs positives de la partie réelle de Z, tout l'abaque est alors compris à l'intérieur d'un cercle où le module du facteur de réflexion est égal à l'unité.

Note 3 à l'article: L'abaque Z -Théta a les mêmes propriétés et applications que l'abaque de Smith, mais l'impédance complexe Z est représentée à l'aide de deux familles de cercles sur chacun desquels soit le module Z soit l'argument θ a une valeur constante au lieu des parties réelle R et imaginaire X de Z employées avec l'abaque de Smith.


ar
مخطط معاوقة ثيتا

cs
graf Z-Theta

de
Z-Theta-Diagramm, n

es
diagrama polar, m
diagrama Z-theta, m

ko
Z- 세타 선도

ja
Z-シータ図表

pl
wykres biegunowy, <impedancji lub admitancji> m

pt
diagrama Z-Teta
diagrama polar

zh
Z-θ图

Publication date: 2025-03
Copyright © IEC 2025. All Rights Reserved.