Queries, comments, suggestions? Please contact us.



Area Mathematics - General concepts and linear algebra / Numbers

IEV ref 102-02-16

en
modulus, <of a complex number>
non-negative real number |c| MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaa4WaaqWaaOqaaiaado gaaiaawEa7caGLiWoaaaa@3CEF@ , the square of which is equal to the product of a complex number c=a+jb MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaadogacqGH9aqpca WGHbGaey4kaSIaaiOAaiaadkgaaaa@3E58@ and its conjugate

|c|= cc* = a 2 + b 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaamaaemaabaGaam4yaa Gaay5bSlaawIa7aiabg2da9maakaaabaGaam4yaiabgwSixlaadoga caGGQaaaleqaaOGaeyypa0ZaaOaaaeaacaWGHbWaaWbaaSqabeaaca aIYaaaaOGaey4kaSIaamOyamaaCaaaleqabaGaaGOmaaaaaeqaaaaa @486B@

Note 1 to entry: The concept of modulus may be applied to complex scalar quantities.


fr
module, <d'un nombre complexe> m
nombre réel non négatif |c| MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaa4WaaqWaaOqaaiaado gaaiaawEa7caGLiWoaaaa@3CEF@ dont le carré est égal au produit d'un nombre complexe c=a+jb MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaaiaadogacqGH9aqpca WGHbGaey4kaSIaaiOAaiaadkgaaaa@3E58@ par son conjugué

|c|= cc* = a 2 + b 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqk0di9Wr=fpeei0di9v8qiW7rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWacmGadaGadeaabaGaaqaaaOqaamaaemaabaGaam4yaa Gaay5bSlaawIa7aiabg2da9maakaaabaGaam4yaiabgwSixlaadoga caGGQaaaleqaaOGaeyypa0ZaaOaaaeaacaWGHbWaaWbaaSqabeaaca aIYaaaaOGaey4kaSIaamOyamaaCaaaleqabaGaaGOmaaaaaeqaaaaa @486B@

Note 1 à l'article: Le concept de module peut s'appliquer aux grandeurs scalaires complexes.


de
Betrag (einer komplexen Zahl), m

es
módulo (de un número complejo)

ko
절대값, <복소수>
모듈러스, <복소수>

ja
絶対値, <複素数の>

nl
be absolute waarde, <van een complex getal> f
modulus, <van een complex getal> m

pl
moduł (liczby zespolonej)

pt
módulo

sr
модуо, <комплексног броја> м јд

sv
belopp (av ett komplext tal)

zh
模, <复数的>

Publication date: 2008-08
Copyright © IEC 2024. All Rights Reserved.