Area Mathematics - General concepts and linear algebra / Vectors and tensors

IEV ref 102-03-06

en
qualifies n vectors ${U}_{1}\text{,}\text{\hspace{0.17em}}{U}_{2}\text{,}\text{\hspace{0.17em}}...\text{,}\text{\hspace{0.17em}}{U}_{n}$ where a linear combination such as ${\alpha }_{1}{U}_{1}+{\alpha }_{2}{U}_{2}+...+{\alpha }_{n}{U}_{n}$ can be equal to zero even if not all scalar coefficients ${\alpha }_{\text{1}}\text{,}\text{\hspace{0.17em}}{\alpha }_{\text{2}}\text{,}\text{\hspace{0.17em}}\cdots \text{,}\text{\hspace{0.17em}}{\alpha }_{n}$ are equal to zero

fr
qualifie n vecteurs ${U}_{1}\text{,}\text{\hspace{0.17em}}{U}_{2}\text{,}\text{\hspace{0.17em}}...\text{,}\text{\hspace{0.17em}}{U}_{n}$ lorsqu'une combinaison linéaire de la forme ${\alpha }_{1}{U}_{1}+{\alpha }_{2}{U}_{2}+...+{\alpha }_{n}{U}_{n}$ peut être nulle même si tous les coefficients scalaires ${\alpha }_{\text{1}}\text{,}\text{\hspace{0.17em}}{\alpha }_{\text{2}}\text{,}\text{\hspace{0.17em}}\cdots \text{,}\text{\hspace{0.17em}}{\alpha }_{n}$ ne sont pas nuls

de

es
linealmente dependiente

ko
선형종속
일차종속

ja

pl

pt