Queries, comments, suggestions? Please contact us.



Area Physics for electrotechnology / Relativistic physics for electrotechnology

IEV ref 113-07-34

Symbol
D AB MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garuGqV92AGeKB0LwC1fgarmWu51My VXgarqqtubsr4rNCHbGeaGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpe ea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0Firpe peKkFr0xfr=xfr=xb9adbaGaamGaciqaaqaaceGaaiGacmqbaaGcba GaamiramaaBaaaleaacaqGbbGaaeOqaaqabaaaaa@3A21@

en
proper distance
for events A and B in relative presence with respect to A, three-dimensional Euclidean distance measured in the inertial frame S where A and B have the same time-related component, t A = t B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGaciGacmaaceGaaiGacaabaaGcbaGaamiDamaaBaaaleaaca qGbbaabeaakiabg2da9iaadshadaWgaaWcbaGaaeOqaaqabaaaaa@3889@

Note 1 to entry: The proper distance D AB MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garuGqV92AGeKB0LwC1fgarmWu51My VXgarqqtubsr4rNCHbGeaGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpe ea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0Firpe peKkFr0xfr=xfr=xb9adbaGaamGaciqaaqaaceGaaiGacmqbaaGcba GaamiramaaBaaaleaacaqGbbGaaeOqaaqabaaaaa@3A21@ is the largest of the Euclidean distances d AB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garuGqV92AGeKB0LwC1fgarmWu51My VXgarqqtubsr4rNCHbGeaGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpe ea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0Firpe peKkFr0xfr=xfr=xb9adbaGaamGaciqaaqaaceGaaiGacmqbaaGcba GabmizayaafaWaaSbaaSqaaiaabgeacaqGcbaabeaaaaa@3A4C@ in all other frames S′ where t A t B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garuGqV92AGeKB0LwC1fgarmWu51My VXgarqqtubsr4rNCHbGeaGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpe ea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0Firpe peKkFr0xfr=xfr=xb9adbaGaamGaciqaaqaaceGaaiGacmqbaaGcba GabmiDayaafaWaaSbaaSqaaiaabgeaaeqaaOGaeyiyIKRabmiDayaa faWaaSbaaSqaaiaabkeaaeqaaaaa@3D5F@ . For inertial frame S′, D AB = γ D AB MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garuGqV92AGeKB0LwC1fgarmWu51My VXgarqqtubsr4rNCHbGeaGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpe ea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0Firpe peKkFr0xfr=xfr=xb9adbaGaamGaciqaaqaaceGaaiGacmqbaaGcba GaamiramaaBaaaleaacaqGbbGaaeOqaaqabaGccqGH9aqpcaaMi8Ua aGPaVlqaeo7agaqbaiaaykW7ceWGebGbauaadaWgaaWcbaGaaeyqai aabkeaaeqaaaaa@43AA@ where γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garuGqV92AGeKB0LwC1fgarmWu51My VXgarqqtubsr4rNCHbGeaGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpe ea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0Firpe peKkFr0xfr=xfr=xb9adbaGaamGaciqaaqaaceGaaiGacmqbaaGcba Gabq4SdyaafaGaaGPaVdaa@3A76@ is the Lorentz factor corresponding to the speed between frames S and S′.

Note 2 to entry: For events A and B separated by an infinitesimally small squared space-time interval, the proper distance D AB MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garuGqV92AGeKB0LwC1fgarmWu51My VXgarqqtubsr4rNCHbGeaGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpe ea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0Firpe peKkFr0xfr=xfr=xb9adbaGaamGaciqaaqaaceGaaiGacmqbaaGcba GaamiramaaBaaaleaacaqGbbGaaeOqaaqabaaaaa@3A21@ is the largest of the Euclidean distances d AB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garuGqV92AGeKB0LwC1fgarmWu51My VXgarqqtubsr4rNCHbGeaGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpe ea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0Firpe peKkFr0xfr=xfr=xb9adbaGaamGaciqaaqaaceGaaiGacmqbaaGcba GabmizayaafaWaaSbaaSqaaiaabgeacaqGcbaabeaaaaa@3A4C@ in all frames S′ and D AB = γ d AB .

Note 3 to entry: The proper distance is a Lorentz scalar.

Note 4 to entry: The coherent SI unit of proper distance is metre, m.


fr
distance propre, f
pour des événements A et B en présence relative par rapport à A, distance euclidienne tridimensionnelle mesurée dans le référentiel inertiel S où A et B ont la même composante temporelle, t A = t B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGaciGacmaaceGaaiGacaabaaGcbaGaamiDamaaBaaaleaaca qGbbaabeaakiabg2da9iaadshadaWgaaWcbaGaaeOqaaqabaaaaa@3889@

Note 1 à l’article: La distance propre D AB MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garuGqV92AGeKB0LwC1fgarmWu51My VXgarqqtubsr4rNCHbGeaGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpe ea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0Firpe peKkFr0xfr=xfr=xb9adbaGaamGaciqaaqaaceGaaiGacmqbaaGcba GaamiramaaBaaaleaacaqGbbGaaeOqaaqabaaaaa@3A21@ est la plus grande des distances euclidiennes d AB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garuGqV92AGeKB0LwC1fgarmWu51My VXgarqqtubsr4rNCHbGeaGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpe ea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0Firpe peKkFr0xfr=xfr=xb9adbaGaamGaciqaaqaaceGaaiGacmqbaaGcba GabmizayaafaWaaSbaaSqaaiaabgeacaqGcbaabeaaaaa@3A4C@ dans tous les autres référentiels S′ où t A t B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garuGqV92AGeKB0LwC1fgarmWu51My VXgarqqtubsr4rNCHbGeaGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpe ea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0Firpe peKkFr0xfr=xfr=xb9adbaGaamGaciqaaqaaceGaaiGacmqbaaGcba GabmiDayaafaWaaSbaaSqaaiaabgeaaeqaaOGaeyiyIKRabmiDayaa faWaaSbaaSqaaiaabkeaaeqaaaaa@3D5F@ . Pour le référentiel inertiel S′, D AB = γ D AB MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garuGqV92AGeKB0LwC1fgarmWu51My VXgarqqtubsr4rNCHbGeaGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpe ea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0Firpe peKkFr0xfr=xfr=xb9adbaGaamGaciqaaqaaceGaaiGacmqbaaGcba GaamiramaaBaaaleaacaqGbbGaaeOqaaqabaGccqGH9aqpcaaMi8Ua aGPaVlqaeo7agaqbaiaaykW7ceWGebGbauaadaWgaaWcbaGaaeyqai aabkeaaeqaaaaa@43AA@ γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garuGqV92AGeKB0LwC1fgarmWu51My VXgarqqtubsr4rNCHbGeaGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpe ea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0Firpe peKkFr0xfr=xfr=xb9adbaGaamGaciqaaqaaceGaaiGacmqbaaGcba Gabq4SdyaafaGaaGPaVdaa@3A76@ est le facteur de Lorentz correspondant à la vitesse relative entre les référentiels S et S′.

Note 2 à l’article: Pour les événements A et B séparés par un carré d’intervalle d’espace-temps infinitésimalement petit, la distance propre D AB MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garuGqV92AGeKB0LwC1fgarmWu51My VXgarqqtubsr4rNCHbGeaGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpe ea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0Firpe peKkFr0xfr=xfr=xb9adbaGaamGaciqaaqaaceGaaiGacmqbaaGcba GaamiramaaBaaaleaacaqGbbGaaeOqaaqabaaaaa@3A21@ est la plus grande des distances euclidiennes d AB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garuGqV92AGeKB0LwC1fgarmWu51My VXgarqqtubsr4rNCHbGeaGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpe ea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0Firpe peKkFr0xfr=xfr=xb9adbaGaamGaciqaaqaaceGaaiGacmqbaaGcba GabmizayaafaWaaSbaaSqaaiaabgeacaqGcbaabeaaaaa@3A4C@ dans tous les référentiels S′ et D AB = γ d AB .

Note 3 à l’article: La distance propre est un scalaire de Lorentz.

Note 4 à l’article: L’unité SI cohérente de distance propre est le mètre, m.


Publication date: 2022-06
Copyright © IEC 2022. All Rights Reserved.