logarithme du nombre d'événements dans un ensemble fini de n événements s'excluant mutuellement H0=log n EXEMPLE La quantité de décision d’un jeu de trois événements est: Note 1 à l’article: La base du logarithme détermine l'unité employée. Les unités habituellement utilisées sont les suivantes: shannon (symbole Sh) pour les logarithmes de base deux, unité naturelle (symbole nat) pour les logarithmes de base e, hartley (symbole Hart) pour les logarithmes de base 10. Table de conversion:
Note 2 à l’article: La quantité de décision est indépendante des probabilités de réalisation des événements. Note 3 à l’article: Le nombre de décisions élémentaires distinctes qui doivent être prises pour choisir un des événements dans un ensemble d'événements s'excluant mutuellement est le plus petit entier supérieur ou égal à la quantité de décision, la base du logarithme étant le nombre de choix possibles à chaque décision. Note 4 à l’article: Lorsqu’on emploie la même base entière pour le même nombre d’événements, la quantité de décision est égale à l’entropie maximale. |