Note 1 to entry: The Dirac function can be considered as the limit of a function, equal to zero outside a small interval containing the origin, and the integral of which remains equal to unity when this interval tends to zero. See Figure 1, where instead of a triangle any other shape with area 1 is possible, too.
Note 2 to entry: The Dirac function is the derivative of the unit step function considered as a distribution.
Note 3 to entry: The Dirac function can be defined for any value x0 of the variable x. The usual notation is:
f(x0)=∫ +∞ −∞δ(x−x0)f(x)dx
Figure 1 – Dirac function
f( x 0 )= ∫ −∞ +∞ δ(x− x 0 )f(x)dx MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqWrVepG0dbbL8F4rqqrVepeea0xe9LqFf0xc9q8qqaq Fn0lXdHiVcFbIOFHK8Feea0dXdar=Jb9hs0dXdHuk9fr=xfr=xfrpe WZqaaeaaciWaamGadaGadeaabaGaaqaaaOqaaiaadAgacaGGOaGaam iEamaaBaaaleaajugWaiaaicdaaSqabaGccaGGPaGaeyypa0Zaa8qm aeaaimaacqWF0oazcaGGOaGaamiEaiabgkHiTiaadIhadaWgaaWcba qcLbmacaaIWaaaleqaaaqaaiaayIW7cqGHsislcqGHEisPaeaacaaM i8Uaey4kaSIaeyOhIukaniabgUIiYdGccaGGPaGaamOzaiaacIcaca WG4bGaaiykaKqzaeGaciizaOGaamiEaaaa@5364@