Note 1 to entry: The term “special” in "special Lorentz transformation" is used with a different meaning than that in the term “special theory of relativity”.
Note 2 to entry: For a position vector (x0=c0t,x,y,z) and → β=(β,0,0) as the velocity of S′ regarding to S, the special Lorentz transformation reads
c0t′=γ(c0t−β x)x′=γ(x−β c0t)y′=yz′=z
For a position vector (x0=jc0t,x1,x2,x3) in a complex form with pseudo-Euclidian metric, and → β=(β,0,0) as the velocity of S′ regarding to S, the special Lorentz transformation reads
x′0=γx0−jβγ x1x′1=jβγ x0+γx1x′2=x2x′3=x3
showing that the special Lorentz transformation is a rotation in a complex plane (x0;x1) with a complex angle φ where tanφ=β.
Note 3 to entry: Two special Lorentz transformations along the same axis result in a special Lorentz transformation along the same axis. Two special Lorentz transformations along different axes usually result in a general Lorentz transformation.
Note 2 to entry: For a position vector ( x 0 = c 0 t,x,y,z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaWaaeWaaeaacaWG4bWaaS baaSqaaiaaicdaaeqaaOGaeyypa0Jaam4yamaaBaaaleaacaaIWaaa beaakiaadshacaGGSaGaamiEaiaacYcacaWG5bGaaiilaiaadQhaai aawIcacaGLPaaaaaa@3F60@ and β → =( β,0,0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaWaa8HaaeaacaaMi8Uaiu gGjk7aaiaawEniaiabg2da9maabmaabaGaaKOSdiaacYcacaaIWaGa aiilaiaaicdaaiaawIcacaGLPaaaaaa@3F1E@ as the velocity of S′ regarding to S, the special Lorentz transformation reads
c 0 t ′ =γ( c 0 t−β x ) x ′ =γ( x−β c 0 t ) y ′ =y z ′ =z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGceaqabeaacaWGJbWaaSbaaS qaaiaaicdaaeqaaOGabmiDayaafaGaeyypa0JaaK4SdmaabmaabaGa am4yamaaBaaaleaacaaIWaaabeaakiaadshacqGHsislcGaDaMOSdi aayIW7caWG4baacaGLOaGaayzkaaaabaGabmiEayaafaGaeyypa0Ja aK4SdmaabmaabaGaamiEaiabgkHiTiaajk7acaaMc8Uaam4yamaaBa aaleaacaaIWaaabeaakiaajshaaiaawIcacaGLPaaaaeaaceWG5bGb auaacqGH9aqpcaWG5baabaGabmOEayaafaGaeyypa0JaamOEaaaaaa@54C9@
For a position vector ( x 0 =j c 0 t, x 1 , x 2 , x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaWaaeWaaeaacaWG4bWaaS baaSqaaiaaicdaaeqaaOGaeyypa0JaciOAaiaadogadaWgaaWcbaGa aGimaaqabaGccaWG0bGaaiilaiaadIhadaWgaaWcbaGaaGymaaqaba GccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakiaacYcacaWG4bWa aSbaaSqaaiaaiodaaeqaaaGccaGLOaGaayzkaaaaaa@4323@ in a complex form with pseudo-Euclidian metric, and β → =( β,0,0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca aMi8UamugGek7aIbGaay51GaGaeyypa0ZaaeWaaeaacqaHYoGycaGG SaGaaGimaiaacYcacaaIWaaacaGLOaGaayzkaaaaaa@42AE@ as the velocity of S′ regarding to S, the special Lorentz transformation reads
x ′ 0 =γ x 0 −jβγ x 1 x ′ 1 =jβγ x 0 +γ x 1 x ′ 2 = x 2 x ′ 3 = x 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGceaqabeaaceWG4bGbauaada WgaaWcbaGaaGimaaqabaGccqGH9aqpcaqIZoGaamiEamaaBaaaleaa caaIWaaabeaakiabgkHiTiGacQgacGaDaMOSdiaajo7acaaMi8Uaam iEamaaBaaaleaacaaIXaaabeaaaOqaaiqadIhagaqbamaaBaaaleaa caaIXaaabeaakiabg2da9iGacQgacaqIYoGaaK4SdiaayIW7caWG4b WaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaaK4SdiaadIhadaWgaaWc baGaaGymaaqabaaakeaaceWG4bGbauaadaWgaaWcbaGaaGOmaaqaba GccqGH9aqpcaWG4bWaaSbaaSqaaiaaikdaaeqaaaGcbaGabmiEayaa faWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaamiEamaaBaaaleaaca aIZaaabeaaaaaa@59EF@
showing that the special Lorentz transformation is a rotation in a complex plane ( x 0 ; x 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaWaaeWaaeaacaWG4bWaaS baaSqaaiaaicdaaeqaaOGaai4oaiaadIhadaWgaaWcbaGaaGymaaqa baaakiaawIcacaGLPaaaaaa@392C@ with a complex angle φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaGaaKOXdaaa@345D@ where tanφ=β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX garuavP1wzZbItLDhis9wBH5garmWu51MyVXgarqqtubsr4rNCHbGe aGqipG0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm 0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9ad baGaaiGabaqaamaaceGaaiGacmabaaGcbaGaciiDaiaacggacaGGUb GaaKOXdiabg2da9iaajk7aaaa@3974@ .